Materialwissenschaft III b – Oberflächen und Grenzflächen

Dozent: Prof. Jaegermann

Grenzflächen von Materialien

I Einführung

14. Oktober 2008

Oberflächenphysik	Oberflächen-Wissenschaft
Oberflächenchemie J	(surface science)

Begriffspaare: nicht Oberfläche sondern Grenzfläche

2. Ausdehnung von Oberflächen / Grenzflächen

Klassische Festkörperphysik $1 \text{ cm}^3 \rightarrow \sim 10^{23}$ Atome

- · Physikalische Theorie nutzt Translationssymmetrie
- · Oberflächenatome 10^{15} cm⁻² werden vernachlässigt

Oberflächen- / Grenzflächenforschung

Definition:

Einfluss der Oberfläche / Grenzfläche auf physikalische / chemische Prozesse materialwissenschaftlicher Eigenschaften von Bedeutung

- · Abhängig von Eigenschaft
- · Abhängig von Dimension \rightarrow nano

Bild 1:

physikalische Eigenschaften, Prozesse und Volumeneigenschaften im Bezug auf Schichtdicke

Anteil Oberflächenatome vs. Volumenato	me
--	----

Kantenlänge Würfel	1 nm	1 µm	1 mm
N_{vol}	1	$2, 7 \cdot 10^{10}$	$2,7 \cdot 10^{19}$
N _{OF}	26	$5, 4 \cdot 10^7$	$5,4 \cdot 10^{13}$
N _{OF} /N _{Vol}	0,96	$2 \cdot 10^{-2}$	$2 \cdot 10^{-6}$

Bild 2 (Abb. 1.1.2 & 1.2.3): Atompositionen im würfelförmigen Festkörper & typische Struktur von Festkörperteilchen

- → wichtig bei miniaturisierten Systemen (Nanotechnologie), dünnen Schichten, Clustern, Verbundsystemen
- \rightarrow Festkörper-Oberflächen (Grenzflächen) im atomaren Bereich sehr heterogen
 - Ausbildung unterschiedlicher Positionen ("sites") mit unterschiedlichen
 Bildungsverhältnissen

These (von Prof. Jaegermann):

Oberflächen- und Grenzflächenwissenschaft is eine der zukünftigen Schlüsselwissenschaften

 $\begin{array}{l} \underline{\text{Bild 3}} \text{ (Abb. 3.4.14 \& 3.4.13):} \\ \text{Wachstum einatomarer Inseln} \\ \text{mit } 2\times1 \text{ Struktur auf gestufter} \\ \text{Si(100) Struktur \& Si(111)} \\ \text{Oberfläche mit } 7\times7 \\ \\ \ddot{\text{U}} \text{berstruktur in zwei Domänen} \end{array}$

Problem:

Charakterisierung von OF / GF auf atomarer Ebene

- wo sitzen die Atome

Methodisches **und** theoretisches Problem

- wie sind die physikalischen Eigenschaften

Typische Problemkreise

- 1) Katalyse und Reaktionen an Oberflächen
- 2) Kristallwachstum und Epitaxie
- 3) Halbleiter-Heterogrenzflächen
- 4) Struktur und Dynamik an elektrochemischen Grenzflächen
- 5) Sensoranwendungen
- 6) Mechanische Eigenschaften von Korngrenzen

Beispiel Einsatz Katalysator: $2CO + O_2 \rightarrow 2CO_2$

<u>Bild 4:</u> Katalyse – Prinzip und Bedeutung (Schaubild)	<u>Bild 5:</u> Wirkung der Katalyse (Schaubild)	<u>Bild 6:</u> Klassifizierung in der Katalyse (Schaubild)
<u>Bild 7:</u> Dynamik der Molekül- Oberflächen-Wechelwirkung	Bild 8: Verkleinerung der elektronischen Funktion (Schaubild)	Bild 9: Integrierte Schaltkreise (IC's) im Größenvergleich (Schaubild)
Bild 10: Moderner 4 Mb-Speicherchip im Größenvergleich mit menschlichem Haar	Bild 11 (Abb. 1.1.6 & 1.1.7): Querschnitt durch eine 4-Mbit- DRAM-Speicherzelle & Schematische Darstellung einer	Bild 12: Elementarschritte des Filmwachstums
(Schaubild)	Mehrschichtenverbindung mit verschiedenen Grenzflächen	
Bild 13: Film Growth: Island shape (Schaubild)	Bild 14: Metalle auf Substraten (TEM und STM)	Bild 15: Fest/Flüssig-Grenzflächen (Elektrochemische Doppelschicht)
,	,	//
Bild 16: Semiconductor/Electrolyte- Contact: Interface Processes	<u>Bild 17:</u> Prinzip der Sauerstoff- und Säurekorrosion (Schaubild)	Bild 18 (Abb. 1.3 & 1.6): Erste verwendet Ausgangs- konfiguration der Atome in der Korngrenze & Berechnete
		Struktur eine Korngrenze zwischen zwei Körnern einer
Bild 19: Integrated UHV-system for sample preparation and surface		hexagonales Struktur.
analysis		

Annahme bis auf weiteres: Gasphase definiert.

II. Oberfläche (Festkörper / Gas Grenzfläche)

Definition aus thermodynamischer Sicht

Gleichgewicht Festkörper \leftrightarrow Gasphase

Zu Bild 20: Übergang von FK zu Gas: Abnahme von Dichte Material A Fest/Fest: Abnahme Dichte A, Zunahme Dichte B, Grenzfläche im Bereich des Übergangs

- ⇒ Inhomogene Bereich zwischen zwei homogenen Bereichen
 Dicke der Grenzflächen-Phase 3 Å bis 100 Å.
- ⇒ Jede extensive (von menge der Phase abhängig) thermodynamische Größe wird zerlegt

in
$$\begin{aligned} X_{Ges} &= X_{Solid} + X_{Vapour} + X_{Interface} \\ X &: N, V, U, S, H, G \end{aligned}$$

(intensive Größen: T, ρ , μ)

<u>Bild 21:</u> Adsorption (Thermodynamik)

1. Adsorption:

- Gleichgewichtsvorgang \rightarrow Thermodynamik
- Ungleichgewichtsbedingungen \rightarrow kinetische Kontrolle (typisch für Experiment)

Gedankenexperiment: Spalten von Festkörper in Gas

Oberflächenkonzentration adsorbierter Teilchen: $N_s^{ad} = \frac{N^{ad}}{2A}$

 $N^{ad} = N_g^{(vor)} - N_g^{(nach)} = \Delta N$ in Gasphase durch Erzeugung von 2A

 N_{g} ist gegeben durch $p \cdot V = N^{g} \cdot R \cdot T$

Messung vor und nach Ek-Spaltung

 \Rightarrow Konzentration der Adsorbatspezies auf Oberfläche $\Rightarrow N_s^{excess}$

$$N_{S}^{excess} = \frac{N^{ad}}{2A} = N_{ges} - N_{gas} - N_{solid}$$

<u>Bild 20</u> (Fig. 3.1): Schematic description of a solid/vapor interface $U^{excess} = U_{ges} - U_{gas} - U_{solid}$ $S^{escess} = S_{ges} - S_{gas} - S_{solid}$ (gültig für alle extensiven Größen) :

Am Beispiel innerer Energie U: U^{excess} ist die Oberflächenenergie

21. Oktober 2008

Innere Energie

Bild 21: Adsorption (Thermodynamik)

a) quasi unendlichen Festkörper (T, p konstant)

$$U = U(S, V, N_i)$$

= $TS - pV + \sum_i \mu_i N_i$ (Euler-Gleichung)
$$dU = TdS - pdV + \sum_i \mu_i dN_i$$

$$G = U - TS - pV$$

= $\sum_i \mu_i N_i$ (Gibbs-Duheme-Gleichung)
$$dG = \sum_i \mu_i dN_i$$

b) Erzeugung einer "zusätzlichen" Fläche A \rightarrow benötigte Arbeit $W = \gamma(hkl) \cdot A(hkl)$

$$\gamma(hkl) = \lim_{dA\to 0} \left(\frac{dW}{dA(hkl)} \right)$$
 Oberflächenenergie, Oberflächenspannung der Fläche hkl

quasi-unendlicher Festkörper + Oberfläche A(hkl)

$$U(S,V,N_{i},A(hkl))$$
$$U = TS - pV + \sum_{j} \gamma_{j}(hkl) \cdot A_{j}(hkl) + \sum_{i} \mu_{i}N_{i}$$
$$U_{s}^{excess} = \sum_{j} \gamma_{j}(hkl) \cdot A_{j}(hkl)$$

totales Differential

$$dU = TdS - pdV - \sum \gamma(hkl) dA(hkl) + \sum \mu_i dN_i$$

Im Vergleich zu Volumen $U_s^{excess} = \sum \gamma(hkl) dA(hkl)$

 \rightarrow System strebt Minimum von $\int_{A} \gamma(hkl) dA(hkl) \equiv$ Minimum

d.h. Minimierung der Oberflächenenergie U_s^{excess} \rightarrow Minimierung der Oberflächenanteile mit großer Oberflächenenergie $\gamma(hkl)$ Änderung von $\gamma(hkl)$

Oberflächenenergie, Oberflächenspannung im allgemeinen Falls, ausgehen von G

$$\gamma(hkl) = \left(\frac{\partial G}{\partial A(hkl)}\right)_{p,T,N_i} > 0 \text{ für Fläche (hkl)}$$
$$\gamma(hkl) \approx \frac{1}{2} \frac{z \cdot E_{Bind}(hkl)}{A(hkl)} \text{ als Abschätzung}$$
$$\approx \frac{1}{2} \Delta_{subl}$$

	$z \cdot E_{Bind}$	А	γ Gamma
(100)	1	1	1
(110)	2	$\sqrt{2}$	$\sqrt{2}$
(111)	3	$\sqrt{3}$	$\sqrt{3}$

"Atome relaxieren und rekonstruieren, um Oberflächenenergie zu minimieren."

<u>Bild 22:</u> "Gebrochene Bindungen an der Oberfläche"
<u>Bild 23</u> (Fig 3.3): Schematic drawing of surface and simple Wulff plot
<u>Bild 24:</u> Gleichgewichtsform von Oberflächen (Kristallen) (Wulff'sche Konstruktion)
Bild 25: Blei (fcc-Gitter)

Relaxation und Rekonstruktion von Oberflächen

Minimierung der freien Energie der OF $\gamma(hkl)$

$$\gamma(hkl) = E_s(hkl) - TS_s(hkl)$$

 $E_s \equiv$ Energie der Oberfläche: $U_s^{excess} + pV_s \approx U_s$

 $S_s^{excess} \equiv$ Entropie der Oberfläche

Gleichgewicht
$$\delta \int_{A} \gamma(hkl) dA = 0$$

 $\rightarrow \int_{A} \gamma(hkl) dA \rightarrow Minimum$

 \rightarrow Entropieterm S_s der Oberfläche wird vernachlässigt

für Minimierung des
$$U_s^{excess}$$

Minimum des Produkts Oberflächenenergie · Fläche

→ Minimierung der Oberflächenenergie

Gleichgewichtsform der Oberfläche wird durch Transport von Atomen erzeugt.

 \rightarrow einfach bei Flüssigkeiten

→ thermisch aktiviert bei Festkörper-Oberflächen

$$\vec{j} = -\left(\frac{D_0}{A \cdot k \cdot T}\right) \cdot \exp\left(\frac{-E_A^D}{k \cdot T}\right) \cdot \frac{\partial}{\partial r} \mu_s$$

Oberflächendiffusion tritt nur bei hinreichen hohen Temperaturen auf.

 $z.B.: > 450 \ ^{\circ}C$ für Ge

 $> 099\ ^\circ C$ für Si

Die Bildung eines lokalen Minimums der Oberflächenspannung

⇒ drastisch für Halbleiter (gerichtete Bindungen)

⇒ weniger problematisch bei Metallen (ungerichtete Bindungen)

Relaxation: · Veränderun	g der Bindungsabstände	
senkrecht zu	ı Oberfläche	Bild 27 (Table 3.1): Relaxation and Reconstruction & Multilayer Relaxation of
· keine übers	Iruktur	various metal surfaces
· keine Aktivi	ierungsenergie	
\Rightarrow typische Werte: $\Delta c_{12} \sim$	-10 %	
$\Delta c_{23} \sim +2 -$	5 %	
<u>Rekonstruktion:</u> · Verände · Überstru · Aktivier	erung der Atomanordnung in d ukturen rungsenergie zum Teil notwen	ler Oberflächenebene ndig
Bild 28 (Fig 3.2 & Fig 3.6): Illustration fo the three most important low-index crystal	<u>Bild 29</u> (Fig 4 & Fig 7): Top view of the 1×5 reconstruction of the Ir(100)	Bild 30: Tetraedisch gebundene HL

surface & Atomic resolution

reconstructed Au(111) surface

STM image of the

Rekonstruktionen von Halbleitern

planes & Perspective view of

an fcc(100) surface

Typische Halbleiter: Si, Ge, C, GaAs, CdTe, ...

<u>Volumen:</u> Fcc-Kristallgitter, sp³-Hybridisierung der Atome \rightarrow tetraedrische Bindungswinkel

Oberflächen: Volumenartige Oberfläche (bulk truncated surface)

Je nach Oberflächen-Orientierung unterschiedliche Zahl von "dangling bonds"

⇒ Rekonstruktion der Oberfläche zur Minimierung der dangeling bonds

d.h. Reduzierung von $\gamma(hkl)$

d.h. Umhybridisierung der Oberflächenatome)

- ⇒ jede Halbleiter-Oberfläche zeigt typische Rekonstruktionen (abhängig von T)
- ⇒ Nebenbedingung: Ausbildung von polaren Oberflächen (Polare Flächenladung) energetisch unmöglich

Si(100) 2×1

Bild 31 (Fig. 9.1): Formation of untilted and tilted dimeters on {100}-oriented surfaces

- Paarbildung von benachbarten Si-dangling bonds
 - \rightarrow gespannten σ -Bindung
- Jahn Teller-Verzerrung der symmetrisch gebundenen Oberfläche (elektronisch getriebene Gitterverzerrung → asymmetrische Dimere)

(Umhybridisierung: $\begin{array}{c} sp^3 \rightarrow p + sp^2 \ (BH_3) \\ sp^3 \rightarrow s + p^3 \ (NH_3) \end{array}$ Ladungstransfer von A \rightarrow B

"Da ein Atom beide Elektronen 'bekommt', erfährt das System einen Energiegewinn."

<u>GaAs(110) – (1×1)</u>

<u>Bild 32</u> (Fig. 3.5a-c): Atomic positions of the GaAs(110) surface

Nicht polare Oberfläche von 3-5 Halbleitern

- \rightarrow keine Rekonstruktion sondern nur Relaxation
 - · asymmetrische Struktur der Oberflächenatome

· Umhybridisierung
$$\frac{\text{Ga}(sp^3 \to sp^2 + p)}{\text{As}(sp^3 \to p^3 + s)}$$
Ladungstransfer Ga \to As

Bild 33 (Fig. 3.6a-c): Atomic positions at the Si(111) surface	$\begin{array}{c} \underline{\text{Bild 34}} \text{ (Fig. 11.6):} \\ \text{Atom arrangement of Si(110) -} \\ (7 \times 7) \text{ surfaces according to} \\ \text{the dimer-adatom-stackin fault} \\ (\text{DAS) model} \end{array}$	<u>Bild 35:</u> STM ein Si(111) - (7×7)
Bild 36:	<u>Bild 37:</u>	<u>Bild 38:</u>
Fortsetzung von Bild 35	Polare Oberflächen II	GaAs(100) Oberflächen

28. Oktober 2008

Einschub: 2 dimensionale Kristallographie + Überstrukturen

1) quadratisches Gitter a=b, $\gamma = 90^{\circ} \rightarrow (100)$ Oberfläche kubischer Kristalle <u>Bild 39</u> (Fig. 3.3) Direct and reciprocal lattices for the five two-dimensional Bravais lattices

- 2) rechteckiges Gitter $a \neq b$, $\gamma = 90^{\circ} \rightarrow (110)$ Oberfläche kubischer Kristalle, Spaltfläche von 3-5 Halbleitern
- 3) hexagonales Gitter a=b, $\gamma = 120^{\circ} \rightarrow (111)$ Oberfläche kubischer Kristalle, Si-Spaltfläche, (0001) Graphit
- 4) rechtwinklig zentrierte Gitter $a \neq b$, $\gamma = \arccos\left(\frac{b}{2a}\right)$
- 5) schiefwinkliges Gitter $a \neq b, \ \gamma \neq 90^{\circ}$

Reziproke 2D Gitter

Reales Gitter: $\vec{T} = r \cdot \vec{a} + s \cdot \vec{b} + (t \cdot \vec{c})$ Reziprokes Gitter: $\vec{G}_{hkl} = h \cdot \vec{a}^* + k \cdot \vec{b}^* + (l \cdot \vec{c}^*)$

 $(t \cdot \vec{c})$ bzw $(t \cdot \vec{c}^*)$ sind Tiefeninformationen

Reziproke Gitter

3D:
$$\vec{a}^* = 2\pi \cdot \frac{\vec{b} \times \vec{c}}{V}, \vec{b}^* = 2\pi \cdot \frac{\vec{c} \times \vec{a}}{V}, \vec{c}^* = 2\pi \cdot \frac{\vec{a} \times \vec{b}}{V}, V = \vec{a} \cdot \vec{b} \times \vec{c}$$
 Spaltprodukt
 $\Rightarrow \vec{a}^*$ steht senkrecht auf \vec{b}, \vec{c} $\left| \vec{a}^* \right| = \frac{2\pi}{d_{100}}$

2D:
$$\vec{a}^* = 2\pi \cdot \frac{b \times \vec{n}_c}{A}$$
 mit $A = \vec{a} \cdot \vec{b} \times \vec{n} = \left| \vec{a} \times \vec{b} \right|$ Fläche der Oberflächen-Einheitszelle
 $\vec{n} =$ Normalenvektor zur Oberfläche

 $\Rightarrow \quad \vec{a}^* \text{ steht senkrecht auf } \vec{b} , \quad \left| \vec{a}^* \right| = \frac{2\pi}{d_{10}}$

Länge entspricht 2π / Abstand der Gitterlinien der Oberfläche

Bezeichnung von Überstrukturen

Bild 40 (Fig. 3.10a-d) Different possibilities for surface unit meshes which are different from that of the underlying bulk material

1) Wood'sche Notation

$$S(hkl) - i\left(\frac{b_1}{a_1} \times \frac{b_2}{a_2}\right) \cdot R\alpha(-\eta A)$$

- S: Substratmaterial
- i: p für primitiv, c für zentriert
- *a_i*: Länge der Basisvektoren der unrekonstruierten Oberfläche (Substrat)
- *b_i*: Länge der Basisvektoren der rekonstruierten Oberfläche (Adsorbat)
- α : Winkel zwischen \bar{a} und \bar{b}
- A: Adsorbatspezies
- η : Zahl der adsorbierten Spezies in rekonstruierte Einheitszelle

Beispiele:

$$Ni(100) - p(\sqrt{2} \times \sqrt{2}) - R(45^{\circ}) - CO$$
$$Ni(100) - c(2 \times 2) - CO$$
$$Ir(110) - (2 \times 2) - 2S$$

Übergitter in Matrixschreibweise

Einheitszelle Substrat: (\vec{a}_1, \vec{a}_2)

Einheitszelle Oberfläche (oberste Lage): $(\vec{b_1}, \vec{b_2})$

$\left(\vec{b}_{1}\right) = M$	$\left(\bar{a}_{1} \right)$	$M = \begin{pmatrix} m_{11} \end{pmatrix}$	m_{12}
$\left(\vec{b}_2 \right)^{-m}$	$\left(\bar{a}_{2}\right)$	$m = (m_{21})$	m_{22})

 $\det(M) = \frac{|b_1 \times b_2|}{|a_1 \times a_2|} = \frac{\text{Fläche Einheitszelle von B}}{\text{Fläche Einheitszelle von A}}$

$\det(M)$:	ganze Zahl	\rightarrow	Übergitter
	rationale Zahl	\rightarrow	kohärentes Gitter
	irrationale Zahl	\rightarrow	inkohärentes Gitter

<u>Bild 41:</u> Real space lattice & reciprocal lattice

31. Oktober 2008

Darstellung "sauberer" Oberflächen

Möglichst ausgehend von einkristallinen Proben hinreichend großer Dimension.

⇒ Kristallzüchtung

- 1) Spalten, Brechen, (Kratzen) von Kristallen
 - \rightarrow + Gibt saubere Oberflächen, geordnete Spaltflächen
 - \rightarrow Nicht alle Flächen zugänglich
 - ⇒ Halbleiter, Keramiken

<u>Bild 42</u> (Fig. 2.1 & 2.2): Semiconductor sample prepared for cleavage & scheme of a multile cleavage set-up

- Heizen und Tempern, Ionenbeschuß und Heizen (Ionenbombardement und annealing (BA))
 - \rightarrow + Sehr gut für Metalle
 - \rightarrow nicht gut auf Halbleiter, Oxide anwendbar (gut geht Sn, Ge)
 - ⇒ Ergibt saubere und geordnete Flächen
 - ⇒ Im Prinzip sind alle Flächen möglich
 - ⇒ Für viele Materialien <u>nicht</u> oder begrenzt anwendbar ("Nicht anwendbar, wenn sich dadurch Stöchiometrie ändert")

<u>Bild 43</u> (Fig. IV.4a-c): "Ionenbombardement (Sputtering)": Three regimes of sputtering by elastic collisions

- 3) Herstellung von Kristallinen Schichten unter UHV-Bedingungen
 - ⇒ MBE, MOWD, PVD
 - \rightarrow + Prinzipiell für alle Flächen denkbar
 - → Eigenes Forschungsproblem (3-5 und 2-6 Halbleiter, Oxide, Metalle)
- Bild 44 (Fig. 2.10): "Molecular Beam Epitaxy (MBE)": Schematic cop view over a combination of growth UHV chamber for MBE or MOMBE
- 4) Chemische Behandlung von Oberflächen, Chemisches Ätzen
 - → + Prinzipiell für alle Oberflächen Anwendbar
 - \rightarrow + Große Variationsbreite
 - → eigenes Forschungsproblem (bisherige Verfahren liefern sehr gut definierte
 Oberfläche <u>aber</u> häufig mit Monolage eines Adsorbats)

III. Adsorption

Adsorption ans Phasengrenze Festkörper / Gas

Bestimmt durch die Wechselwirkung Gasmolekül / Substrat-Oberfläche

2 unterschiedliche Arten der Adsorption

	Physisorption	Chemisorption
Wechselwirkung	van der Waals	chemische Bindung
Energie	$\Delta H_{\rm phys} < 50 \frac{kJ}{mol}$	$\Delta H_{\rm chem} > 50 \frac{kJ}{mol}$
Ŭ	$\Delta H_{\rm phys} < 0.5 \frac{eV}{\rm Teilchen}$	$\Delta H_{\rm chem} > 0.5 \frac{eV}{\rm Teilchen}$
Aktivierungsprozess	nicht aktiviert	aktiviert (thermisch)
Adsorbatschichten	Polyschichten	Monoschichten
Typische Systeme	Edelgase, inerte Moleküle (z.B. ${ m N}_2^{},{ m H}_2^{})$	CO, O, N

Typischer Übergang: Physisorption \rightarrow Aktivierung \rightarrow Chemisorption

Unterschiedliche Adsorptionsplätze:

- \cdot on top site (Spitzenlage): Einfach koordiniert
- bindging site (Brückenlage): Zweifach koordiniert
- hollow site (Muldenlage): Drei-, vierfach koordiniert

Abhängig von Substrat, Adsorbat, Größenverhältnissen, Bindungen, Wechselwirkungsenergie

Orientierung zum Substrat

- \cdot normal
- · gewinkelt
- unterschiedliche Orientierung

<u>Bild 45</u> (Fig. 3.12 & 3.13): Illustration of the local symmetry of adsorption sites & schematical representation of different possible configurations of a triatomic-bent molecule

<u>Bild 46</u> (Fig. 1.2): Two representations of part of a solid surface depicting a variety of different surface sites

III.1 Thermodynamik der Adsorption

2 Phasen: A: Festkörper B: Gas

Frage nach Variation der Oberflächenspannung (-Energie) mit Zusammensetzung der Grenzfläche

→ Definition einer zusätzlichen Phase

A (Festkörper)

Dicke: $\leq 20 \text{ Å}$

B (Gas) Volumeneigenschaften A, B: homogene Eigenschaften (Konzentration der Teilchen) Oberflächenphase:

Variation der Eigenschaften

Oberflächenphase S

(Konzentration der Teilchen n_i)

 $n_i^{tot} = n_i^A + n_i^B + n_i^S \rightarrow n_i^S = n_i^{excess} = n_i^{tot} - n_i^A - n_i^B$ analog für $U_i^S = U_i^{excess} = U_i^{tot} - U_i^A - U_i^B$ $S_i^S = S_i^{excess} = S_i^{tot} - S_i^A - S_i^B$

$$\mathrm{d}G^{s} = S^{s}\mathrm{d}T + \gamma\mathrm{d}A + \sum \mathrm{d}A + \sum \mu_{i}\mathrm{d}n_{i}$$

für isotherme Bedinungen gilt (T=const)

$$dG^{s} = \gamma dA + \sum \mu_{i} dn_{i}$$

$$G^{s} \approx F^{s} = \gamma \cdot A + \sum \mu_{i} n_{i}$$
(1)

das total Differential lautet:

$$\mathrm{d}G^{s} = \gamma \mathrm{d}A + A\mathrm{d}\gamma + \sum \mu_{i}\mathrm{d}n_{i}^{s} + \sum n_{i}\mathrm{d}\mu_{i}^{s}$$

 \rightarrow aus (1) und (2) folgt:

$$Ad\gamma + \sum n_i^s d\mu_i = 0$$
 (Gibbs-Duhem-Gleichung)

15

Bild 47 (Fig. 1): Plot of particle density profiles versus distance vertical to an interface for a two component system

(2)

mit der Definition einer Oberflächenkonzentration $T_i = \frac{n_i}{A} \left[cm^{-2} \right]$

$$\rightarrow \quad d\gamma = -\sum T_i d\mu_i \qquad (Gibbs'sche Adsorptionsiostherme)$$

im Allgemeinen Fall gilt (Einfluss von d*T*):

$$d\gamma = -\sum T_i d\mu_i - S^s dT$$
 (Gibbs'sche Adsorptionsgleichung)

 \rightarrow Änderung der Oberflächenenergie (γ) entspricht der Oberflächenkonzentration der Adsorbate mal der damit verbundenen Änderung des chemischen Potentials.

<u>Problem</u>: Die chemischen Potentiale μ_i sind nicht unabhängig voneinander.

Für das vorgestellte Adsorptionssystem (Festkörper \equiv A, eine Gasspezies \equiv B) gilt (da $T_A = 0$) \rightarrow Oberflächenexcess-Konzentration $\rightarrow T_B$

$$T_{B} = T_{ads} = -\left(\frac{\partial \gamma}{\partial \mu_{B}}\right)_{\mu_{A},T}$$
$$d\gamma = -T_{ads}d\mu_{ads}$$

d.h. eine Anreicherung (Adsorption) an der Oberfläche $\triangleq T_{ads} > 0$ d.h. $\Delta \gamma < 0$, $\Delta \mu_{ads} > 0$

mit $d\mu = R \cdot T \cdot d \ln(p) = RT \frac{dp}{p}$

$$\rightarrow \quad \mathrm{d}\gamma = -T_{ads} \cdot kT \mathrm{d} \ln(p) = -T_{ads} \cdot kT \cdot \frac{\mathrm{d}p}{p}$$

$$\rightarrow \qquad T_{ads} = -\frac{p}{RT} \cdot \frac{\mathrm{d}\gamma}{\mathrm{d}p}$$

d.h. falls $\frac{d\gamma}{dp}$ negativ: Erniedrigung von γ mit zunehmenden p

⇒ Anreicherung der Adsorbationsspezies

Adsorptionsenergien

Annahme: Substrat (Adsorbent) ist inert mit Adsorption

Im Gleichgewicht gilt: $d\mu_2^g = d\mu_2^s$

Index 2: Gasphasenmolekül (kann entfallen)

$$d\mu^{g} = -S^{g} dT + V_{g} dp$$
$$d\mu^{S} = -S^{S} dT + V_{S} dp + \frac{A}{n_{S}} d\gamma$$

Bei konstanter Oberflächenbelegung mit X \triangleq konstanter Oberflächenenergie $(d\gamma = 0)$

- → sogenannter isostere Fall der Adsorption
- $\rightarrow \qquad \left(\frac{dp}{dT}\right)_{\gamma \triangleq T} = \frac{S^s S^s}{V^s V^s} = \frac{\Delta S}{\Delta V} \qquad (2D \text{ Clausius-Clapeyron-Gelichung})$

Mit $V^{g} \gg V^{S}$ und Annahme eines idealen Gases $(p \cdot V = n \cdot R \cdot T)$ folgt:

$$\left(\frac{d\,\ln\left(p\right)}{dT}\right)_{\Gamma} = \frac{\Delta S}{R\cdot T} = \frac{\Delta H_{ads}}{R\cdot T^2}$$

Mit $\Delta S = \frac{\Delta Q_{rev}}{T} \approx \frac{\Delta H}{T}$

$$\left(\frac{d\ln\left(p\right)}{d\frac{1}{T}}\right)_{\Gamma} = -\frac{\Delta H_{ads}}{R}$$

Auftragung von ln(p) gegen 1/T für konstante Bedeckung. Γ .

 $\Rightarrow \frac{\Delta H_{ads}}{R}$

 $\Theta = \frac{\text{Bedeckung der Oberfläche}}{\text{Maximale Bedeckung}}$

Bild 49 (Fig. 2.3 & 2.4 & 2.5): Adsorption isotherms for Xe on Ni(100) & Isosteric ???? & Coverage dependence of the siosteric heat of adsorption

<u>Bild 48</u> (Fig. 9.1 & XVII-20): Test of the Gibbs adsorption isotherm for oxygen on copper & Isosteric heat of adsorption of Xe on a stepped Pd surface

Adsorptionsiosthermen

- · Stärke der Wechselwirkung Adsorbat / Substrat (ΔH_{ads}) bestimmt die Abhängigkeit der Adsorbat-Oberflächen-Konzentration vs. Gasdruck
- thermodynamische Experiment (reversibler Prozess) bei konstantem T, bei variablem Druck p

Adsorbatkonzentration auf Oberfläche gegeben durch relative Bedeckung:

 $\Theta = \frac{\text{Bedeckung der Oberfläche}}{\text{Maximale Bedeckung}} = \frac{\Gamma}{\Gamma_{\text{max}}}$

<u>Problem:</u> Γ_{max} kann von den Bedingungen abhängen

- · Monolage vs Multilage
- · adsorbierte Spezies

Auftragung $\Theta(p)$ bei konst. T

<u>Alternativ</u>: normierter Druck $\frac{p}{p_0}$

 $p_0 \equiv$ Gleichgewichtsdruck für Adsorbat bei T

Bild 50 (Abb. 4-10): Beispiele für den unterschiedlichen Verlauf der Adsorptionsisothermen

Unterschiedliche Adsorptionsisotherme

- Typ I: Chemisorption, Monolagenadsorption, starke Wechselwirkung Adsorbat / Substrat
- Typ III: Physisorption, Multilagenadsorption, schwache WW Adsorbat / Substrat
- Typ II: Monolage Chemisorption, dann Multilagenadsorption
- Typ IV: Erst Chemisorption in Poren, dann Physisorption in Poren, dann Physisorption auf OF des FK
- Typ V: Physisorption im porösen FK ohne Chemisorption

Quelle: http://www.uni-oldenburg.de/tchemie/Praktikum/Adsorption.pdf

Ca. 50 unterschiedliche Adsorptionsisothermen

Einfluss: · Adsorbatgröße, Wechselwirkung mit Substrat und untereinander

- · Phasengrenzen (Fest-Gas, Fest-Flüssig)
- · inner oder äußere Grenzflächen Porengrößen
- · Homogenität oder Heterogenität der Oberfläche

Languir- und Henry-Isotherme

Annahmen: · jeder Adsorptionsplatz ist äquivalent

• monomolekulare Chemisorptionsschicht als Grenze

 $A(g) + S(s) \xrightarrow{T} A - S$

Dynamisches Gleichgewicht $\dot{\Theta} = \frac{d\Theta}{dt} = 0$

$$\Gamma_{A} = k_{ads} \cdot p \cdot (1 - \Theta) = \dot{\Theta}$$

$$\Gamma_{D} = k_{des} \cdot \Theta$$

$$\Gamma_{A} = \Gamma_{D}$$

$$\Rightarrow k_{ads} \cdot p \cdot (1 - \Theta) = k_{des} \cdot \Theta$$

$$\Rightarrow \Theta = \frac{k_{ads} \cdot p}{k_{das} + k_{ads} \cdot p}$$

mit Gleichgewichtskonstante $k = \frac{k_{ads}}{k_{des}}$

 $\Theta = \frac{k \cdot p}{1 + k \cdot p}$

Bei dissoziativer Adsorption: n Plätze werden durch Adsorption besetzt

$$\Theta = \frac{k \cdot p^{\frac{1}{n}}}{1 + k \cdot p^{\frac{1}{n}}}$$

Für Θ klein, d.h. keine Begrenzung der Adsorption durch besetzte Plätze gilt $k \cdot p \ll 1$

 $\rightarrow \Theta = k \cdot p^{\frac{1}{n}}$ Henry Isotherme

Freundlich- und Temkin-Isotherme

- · Berücksichtigung inhomogener (d.h. energetisch inäquivalenter) Adsorptionsplätze
- · Berücksichtigung der Wechselwirkung der Adsorbate miteinander (ΔH_{ads} kleiner für Θ größer

<u>Bild 51</u> (Abb. 4-4 & Fig. 2.6): Prinzipieller Verlauf der Adsorptionsisotherme von Langmuir-Typ & Example of isotherms of the Langmuir type

(Langmuir Isotherme)

Temkin-Isotherme

$$\Theta = k_1 \cdot \ln(k_2) \cdot p \qquad \qquad k_1 \text{ und } k_2 \text{ sind Konstanten}$$

$$\Delta H \text{ ändert sich linear mit } \Theta$$

Freundlich-Isotherme

 $\Theta = k_1 \cdot p^{\frac{1}{\beta}}$ β, k_1 sind bestimmbare Konstanten

 $\beta < 1, \beta > 1$

 ΔH ändert sich exponentiell mit Θ

BET-Isotherme (Bennauer, Emmet, Teller)

• Kopplung von Monolagenadsorption (Chemisorption, ΔH_{chem}) mit Multilagenadsorption (Physisorption, $\Delta H_{phys} \sim \Delta H_{vap}$)

$$k_{ads} \cdot p \cdot N_n = k_{des} \cdot N_{n+1}$$
 für $n = 0, 1, 2, 3, ...$

Bild 52 (Fig. 29.32 & 29.24): In the derivation of the BET isotherm, different... & Plots of the BET isotherm for different values of c

 $\frac{p}{\Gamma(p_0 - p)} = \frac{1}{k \cdot \Gamma_{\infty}} + \frac{p(k - 1)}{p_0 \cdot k \cdot \Gamma_{\infty}}$

mit $p_0 \equiv$ Gleichgewichtsdruck

 $\Gamma_{\infty} \equiv OF$ -Sättigungskonzentration

$$k \equiv \text{konstante} \approx \exp\left(\frac{\Delta H_{des} - \Delta H_{vap}}{R \cdot T}\right)$$

Anmerkung: Auf Bild 52 wird Γ durch V und Γ_{∞} durch V_{mon} ersetzt

Auswertung: Auftragung von $\frac{p}{\Gamma(p_0 - p)}$ gegen $\frac{p}{p_0}$

Steigung ergibt $\frac{k-1}{k \cdot \Gamma_{\infty}}$ (oder $\frac{k-1}{k \cdot V_{mono}}$) Achsenabschnitt ergibt $\frac{1}{k \cdot \Gamma_{\infty}}$ (oder $\frac{1}{k \cdot V_{mono}}$) $\Rightarrow 2$ Gleichungen für k und Γ_{∞} (bzw. V_{mono})

Nutzung von BET-Isothermen

- Wichtig für die Bestimmung der spezifischen OF von pulverförmigen Adsorbentien (Typisch: N_2 als Adsorbens)
- · Messung von adsorbiertem Gasvolumen V unter:
 - → Variation von Druck p (bei definierter Temperatur, z.B. T=75 K)
 - $\rightarrow p_0$ bei 75 K ist bekannt (Gleichgewichtsdruck)
 - \rightarrow eingesetzte Menge (g) des Pulvers ist bekannt
 - \Rightarrow aus BET-Auswertung $\rightarrow \Gamma_{\infty}$ (bzw. V_{mono})

Mit $p \cdot V = n \cdot R \cdot T$ ergibt n und damit N Atome mit Flächenbedarf pro Atom ergibt sich die Fläche des Pulvers

BET-Fläche z.B.
$$1000 \frac{m^2}{g}$$

 $\rightarrow \text{aus } k \approx \exp\left(\frac{\Delta H_{des} - \Delta H_{vap}}{R \cdot T}\right)$ und bekanntem ΔH_{vap} des Gases
 $\Rightarrow \Delta H_{des} = -\Delta H_{ads}$

Kinetik von Oberflächen-Prozessen

Typische OF-Reaktionen:

· Desorption

Adsorption

- · Diffusion
- · (OF-Reaktion)

ggf. thermisch aktiviert

 Abhängig von Energiehyperläche entlang der Reaktionskoordiante (räumliche kooridante

•

Senkrecht OF, Parallel OF)

z.B. Potentialenergiediagramme senkrecht OF (Bild 54), parallel OF (Bild 55)

Bild 53 (Fig. 1.3 & 14.22): Schematic illustration of the surface processes occurring during film growth by MBE & Schematic view of the life history of a gas particle Bild 54 (Fig. 29.27): The potential energie profiles for the dissociative chemisorption of an A-A molecule <u>Bild 55</u> (Abb. 5.4.9): a) Periodisches Potential eines adsorbierten Teilchens... b) Potentialverlauf an nichtidealen Oberflächen

<u>Bild</u> (NICHT KOPIERT) Elementarschritte des

Filmwachstums (Epitaxie)

Zu Bild 54: C entspricht ΔH_{ads}

11. November 2008

Dozent vertreten durch Thomas Mayer

Adsorptionskinetik

Bild 56 (Fig. 14.1): Schematic one-dimensional view of the approach of a gas particle to a solid surface

Adsorption ist bestimmt durch die Energiedissipation

 \rightarrow Festkörper \rightarrow Phononen

Zahl der Atome auf die Oberfläche = Stoßzahl Z

$$Z = \frac{1}{4} N_v \overline{v} \qquad \text{mit} \quad N_v = \frac{N}{V} = \frac{p}{k \cdot T} \qquad \overline{v} = \left(\frac{8 \cdot k \cdot T}{\pi \cdot m}\right)^{\frac{1}{2}}$$
$$z = \frac{dN}{dt} = \frac{p}{\sqrt{2 \cdot \pi \cdot m \cdot k \cdot T}} \qquad \frac{\text{Stöße}}{\text{Fläche} \cdot \text{Zeit}}$$

Beispiel: Stickstoff 300 K m=28 $p = 5 \cdot 10^{-6} Torr$ $z = \frac{3 \cdot 10^{14}}{cm^2 \cdot s} \triangleq 1 \frac{\text{Monolage}}{s} = 1L$

Haftkoeffizient S

$$S = \frac{\text{Rate der adsorbieren Teilchen}}{Z} = \frac{R_{ads}}{Z}$$

$$R_{ads} = S \cdot Z$$

$$S = S \left(\text{Bedeckung } \Theta, \text{Temperatur } T, \frac{\text{Adsorbat}}{\text{Oberfläche}} \text{-Materialkombination} \right)$$

$$\Theta = \int R_{ads} \cdot dt = \int S \cdot Z \cdot dt = \int \frac{S}{\sqrt{2 \cdot \pi \cdot m \cdot k \cdot T}} \cdot p \cdot dt$$
$$\Theta_1 + \frac{\sigma}{\left| \frac{d\Theta}{dt} \right|_{t=0}} p = const \rightarrow p \cdot t$$
Dosierung

Vgl. E_{ads} mit Bild 56, Teil b (hier E_{ads}^A)

- Aktivierungsbarriere E_{ads} :
 - \rightarrow Nur Atome mit $E_{kin} > E_{ads}$ können die Oberfläche erreichen
- · Anzahl freier Adsorptionsplätze (auf 1 Normiert)
 - $\rightarrow f(\Theta)$

Anzahl abhängig von der Adsorptionsgeometrie von der spez. Oberfläche

 $f(\Theta) = 1 - \Theta$ nicht dissoziativ

 $f(\Theta) = (1 - \Theta)^2$ dissoziativ zweiatomige Moleküle

- Haftwahrscheinlichkeit $\sigma (\Theta \rightarrow 0)$
- sterische Faktoren
- Orientierung Adsorbat/Oberfläche \rightarrow chemische Bindungen
 - → Kristalloberflächen-Orientierung
 - → Geometrie des einfallenden Gasstroms
- · Energietransfer-Wahrscheinlichkeit
 - \rightarrow Austausch von Energie und Impuls

(abhängig von Energiedifferenzen und Energieverteilung)

Zustandssumme an der Oberfläche

<u>Bild 57</u> (Fig. 14.4 & 14.8): Convergence dependence of the absolute sticking probability & Variation of the initial sticking coefficient as a function of... <u>Bild 58</u> (Table 3.5): Some selected dvalues of initial sticking probabilities for metalgas interaction

Wiederholung Bilder 53, 55

Oberflächendiffusion

• thermisch aktiverter Prozess ~
$$\exp\left(-\frac{E_{diff}^{A}(x, y)}{k_{B} \cdot T}\right)$$

- · asbhängig von Energiehyperfläche
 - \Rightarrow verschiedene Diffusionspfade

Diffusion auf (110)-Oberfläche

Diffusion ist abhängig von Adsorbat / Adsorbat-Wechselwirkung

<u>Triebkraft der Diffusion</u>: Gradient im chemischen Potential (z.B. Konzentration)

Teilchenstrom:
$$\vec{j} = N_{ad} \cdot \vec{v}$$
 mit $\vec{v} = u_0 \cdot \text{grad}(\mu)$

Mit

$$\vec{v} = -\frac{D_i}{k \cdot T} \cdot \operatorname{grad}(\mu) = -\frac{D_i}{k \cdot T} \cdot \nabla \mu$$

 $u_0 = \frac{D_i}{k \cdot T} \equiv \operatorname{Mobilität}(\operatorname{ext. Kraft})$

<u>Bild 59</u> (Fig. 3.21): One-dimensional potential energy situation $E_{(x,y)}$ parallel to the surface

 $D_i \equiv$ intrinsiche Diffusionskonstante

(Einstein-Beziehung)

Für 1. Dimension:

$$j_x = -N_{ad} \cdot \frac{D_i}{k \cdot T} \cdot \frac{\partial \mu}{\partial x} = -\frac{N_{ad} \cdot D_i}{k \cdot T} \cdot \frac{\partial \mu}{\partial N_{ad}} \cdot \frac{\partial N_{ad}}{\partial x} = -D_{eff} \cdot \frac{\partial N_{ad}}{\partial x}$$

 $\frac{\partial N_{ad}}{\partial x}$ Konzentrationsgradient

 D_{eff} ist Funktion von Θ da $\mu = f(\Theta)$

Für den intrinsischen Diffusionskoeffizienten D_i gilt (Elementarprozess einzelnen Teilchens, Bewegung über Energiehyperfläche)

$$D_i = D_i^0 \cdot \exp\left(-\frac{E_{eff}^A}{k \cdot T}\right)$$

Aktivierungsenergie $E_{eff}^{A} \approx 5 - 20 \%$ der Adsorptionsenergie

$$D_i^0 \approx 10^{-3} \, \frac{cm^2}{s}$$

Mit Annahme statistischer Sprünge zwischen zwei Adsorptionsplätzen (random walk theroy)

 \rightarrow mittleres Verschiebungsquadrat

$$\langle \Delta x(t) \rangle^2 = v \cdot t \cdot d^2$$
 v : Sprungfrequenz, t: Zeit, d^2 : Sprungweite

 \rightarrow zeitunabhängige Selbstdiffusionskonstante:

$$D_{i} = \lim_{t=0} \left(\frac{\left\langle \Delta x(t) \right\rangle^{2}}{2 \cdot b \cdot t} \right)$$

 $b \stackrel{\wedge}{=}$ Dimensionalität des Transports (b=1 \rightarrow linear, b=2 \rightarrow 2 dim Diffusion)

 $\rightarrow D_i = \frac{v \cdot d^2}{2 \cdot b}$ Selbstdiffusion von Teilchen auf Oberfläche

$$\rightarrow \quad \left\langle \Delta x^2 \right\rangle^{\frac{1}{2}} = \left(2 \cdot b \cdot D_i \cdot t \right)^{\frac{1}{2}} \quad \text{oder} \quad \bar{l} = \sqrt{D_i \cdot t \cdot 2 \cdot b}$$

 $\left< \begin{array}{c} \text{mittleres Verschiebungsquadrat für Sprungzeit } t \\ \text{mittlere Sprungdistanz im Zeitintervall } t \end{array} \right>$

$$\begin{aligned} \nu &= \nu_0 \cdot \exp\left(-\frac{E_{diff}^A}{k \cdot T}\right) \\ \tau &= \tau_0 \cdot \exp\left(+\frac{E_{diff}^A}{k \cdot T}\right) \qquad \tau \approx 10^{-13} \ s \to \nu_0 \approx 10^{-13} \ s^{-1} \\ \to \qquad \qquad D_i^0 &= \frac{1}{2 \cdot b} \cdot \nu_0 \cdot d^2 \end{aligned}$$

Verweis auf Bild 54 (Stichwort: "Desorptionsenergie")

Bild 60 (Fig. 14.15 & Table 3.7): Arrhenius plots of singleparticle diffusion constants & some experimentally determined diffusion coefficients of adsorbates **Desorptionskinetik**

 Desorption durch:
 • thermische Anregung
 TDS – thermal desorption spectorscopy

 • elektronische Anregung (Laser, Elektronenstrahl)
 ESD – electron stimulated desorption

 PSD – photon stimulated desorption
 • elektrische Felder (Ionen)

 • elektrische Felder (Ionen)
 FD – field induced desorption

 ⇒ Informationen über Adsorbate, Bindungsverhältnisse, Potentialkurven

z.B. IR-Laser \rightarrow Schwingungsübergänge VIS-Laser \rightarrow Anregung in antibindende Zustände

Thermische Desorption

$$R_{des} = -\frac{dN_{ads}}{dt} = k_{des} \cdot (N_{ads})^m \qquad \qquad m \equiv \text{Ordnung der Desorption}$$
$$(m(Ar) = 1, m(O) = 2, m(H, O, H) = 3)$$

Im Allgemeinen gilt für Desorptionsrate:

$$R_{des}(\Theta,T) = k_{des}^{0} \cdot \Theta \cdot f(\Theta) \cdot \exp\left(-\frac{E_{des}^{A}}{k \cdot T}\right)$$
$$k_{des}(\Theta) = k_{0}(\Theta) \cdot \exp\left(-\frac{E_{des}^{A}}{k \cdot T}\right)$$

 $f(\Theta)$: Ordnung der Reaktion ~ $\Theta^m \triangleq N_{ads}^m$

- $k_0(\Theta)$: Preexponentielle Faktor der Desorption
 - Anzahl der Versuche einer Bewegung in Reaktionskoordiante ⊥
 Oberfläche

Zahl der Schwingungen \perp Oberfläche ~ $10^{12} - 10^{14} s^{-1}$

 $E^{A} \triangleq$ Aktivierungsenerge die Desorption \neq (aber \approx)Desorptionsenergie

Bild 61 (Abb. 5.6.1): Thermische Desorptionsspektren p_{o_i} als Funktion der Temperatur Für Desorption 1. Ordnung (m=1)

 \Rightarrow Definition einer Halbwertszeit auf Oberfläche $\tau_{\frac{1}{2}}$

$$\tau_{\frac{1}{2}} = \frac{\ln(2)}{k_{des}} = \tau_{0} \cdot \exp\left(\frac{E_{des}^{A}}{k \cdot T}\right) \text{ mit } \tau_{0} = \frac{\ln(2)}{k_{0}^{des}}$$

$$\cdot \text{ Physisorbiertes Teilchen: } \tau_{0} \approx 10^{-12} \text{ s} \qquad E_{des}^{A} \approx 25 \frac{kJ}{mol}$$

$$\Rightarrow \text{ Raumtemperatur: } \tau_{\frac{1}{2}} \approx 10^{-8} \text{ s} \qquad 100 \text{ K: } \tau_{\frac{1}{2}} \approx 1 \text{ s}$$

$$\cdot \text{ Chemisorbiertes Teilchen: } \tau_{0} \approx 10^{-14} \text{ s} \qquad E_{des}^{A} \approx 100 \frac{kJ}{mol}$$

$$\Rightarrow \text{ Raumtemperatur: } \tau_{\frac{1}{2}} \approx 3 \cdot 10^{3} \text{ s} \qquad 350 \text{ K: } \tau_{\frac{1}{2}} \approx 1 \text{ s}$$

$$\frac{\text{Bild 62}}{\text{Schematische Darstellung einer}} \qquad \frac{\text{Bild 63}}{\text{Schematische Darstellung}} \qquad \frac{\text{Bild 64}(\text{Fig. XIV})}{\text{Cualitative desc}}$$

Bild 62 (Abb. 5.4.6 & Fig. 4.61): Schematische Darstellung einer UHV-Apparatur zur Bestimmung von thermischen Desorptionsspektren unter Strömungsbedingungen & typical experimental set-up for thermal desorption spectroscopy <u>Bild 63</u> (Abb. 5.4.3): Schmatische Darstellung verschiedener Desorptionsspektren <u>Bild 64</u> (Fig. XIV.1a,b & 2a,b): Qualitative description of a TDS experiment & thermal desorption spectra

<u>Bild 65</u> (Fig. 4.59 & 4.60): Series of thermal-desorption spectra of hydrogen from a Rh(110) surface & series of thermal-desorption spectra of oxygen from a Rh(110) surface

IV. Elektrische Eigenschaften von Oberflächen und Grenzflächen

1.a. Grenzflächenpotentiale

· Thermodynamisches Gleichgewicht / Elektronisches Gleichgewicht

$$Phase A \xrightarrow{e^{-}} Phase B$$

Gleichgewicht: $\Delta G = 0 \Delta G \rightarrow \delta G_A + \delta G_B = 0$

$$dG = \left(\frac{\partial G}{\partial T}\right)_{p,n_i} dT + \left(\frac{\partial G}{\partial p}\right)_{T,n_i} dp + \left(\frac{\partial G}{\partial n_i}\right)_{p,T,n_j} dn_i$$
$$\left(\frac{\partial G}{\partial n_i}\right)_{p,T,n_j} = \mu_i \qquad \text{chemisches Potential der Spezies i}$$

chemisches Potential der Elektronen μ_{e}

$$\delta G^{A} = \delta G^{B} \Longrightarrow \mu_{e}^{A} = \mu_{e}^{B}$$

für Austauche geladener Teilchen (Elektronen, Ionen) über Phasengrenze gilt das • elektrochemische Potential η_i

$$\eta_i = \left(\frac{\partial G}{\partial n_i}\right)_{p,T,n_j} = \mu_i + z \cdot F \cdot \varphi \qquad \qquad \varphi \equiv \text{elektrostatisches Potential der Phase}$$

Fermi Niveau ⇔ chemisches Potential

· Definition des Fermi-Niveaus

Definition des chemischen Potentials von Elektronen

 $\mu \equiv$ chemisches Potential des Elektrons im Festkörper, negative Kraft

$$\mu_{e} = \frac{\partial G}{\partial n_{e}} \approx \frac{\partial F}{\partial n}$$

$$F = U - T \cdot S = \sum_{i} n_{i} \cdot E_{i} - T \cdot k \cdot \ln(W)$$

$$\mu = E_{i} + k \cdot T \cdot \ln\left(\frac{n_{i}}{z_{i} - n_{i}}\right)$$

 $\Rightarrow \qquad n_i = \frac{z_i}{\exp\left(\frac{E_i - \mu}{k \cdot T}\right) + 1}$

•

(Fermi-Verteilungsfunktion)

Für T = 0K $\mu \stackrel{!}{=} E_F$ (aber häufig auch für T > 0K verwendet)

1.b. Grenzflächenpotentiale von Festkörpern

a) Metalle für nicht relaxierte Oberflächen

 $\phi = E_{vac} - E_F = 0 - E_F = -\mu_e$

b) Halbleiter, nicht relaxierte Oberfläche

21. November 2008

c) idealisierte Metalloberfläche

Bild 66: Oberflächendipole mit spreadout und smooth-out

 $\phi = -\mu_{el} + eD = -\mu_{el} + e\chi_S$

Dipolpotential hat 2 Ursachen:

 $\chi_{spread-out}$ Tunneln der Elektronen vom Festkörper ins Vakuum

 \rightarrow Positiver Dipolbeitrag

 $\chi_{smooth-out}$ Ausgleichen der Elektronendichte von atomar nicht-glatter Oberfläche

 \rightarrow negativer Dipolbeitrag

 $\frac{d^2\varphi(z)}{dz^2} = \frac{1}{\varepsilon \cdot \varepsilon_0} \Big[\rho^+(z) - \rho^-(z) \Big]$

 $\chi = \chi_{spr} + \chi_{smo}$

 χ_{spr} ist dominante, besonders groß für dichte Oberflächen

 $\chi_{\rm smo}$ ist kleiner, relativer Beitrag wichtiger für raue / offene Oberflächen

Berechnung des Dipolpotentials erfolgt über Poisson-Gleichung

 $ho^{\scriptscriptstyle +}(z)$ Ladungsdichte Kern

 $\rho^{-}(z)$ Ladungsdichte Elektronen

 $\phi = -\mu_{el} + e\varphi$ $-\eta_{el} = -\mu_{el} + (-1)e\varphi$

Bild 68 (Table 1.3):
Radii of the Wigner-Seitz
sphere

Bild 69 (Table 1 & Figure 2): Experimental Work Function and calculated Values of ... & mechanisms of surface potential onset

Problem: · Rekonstruktion und Relaxation der Oberfläche ist nicht berücksichtigt.

- kaum theoretische Daten
- ⇒ Effekt der Dipolpotentiale muss groß sein. erniedrigt durch Rekonstruktion der Oberfläche qualitative Daten fehlen

$$\begin{aligned} \eta_1 &= -\mu_1 + e \cdot \varphi_1 \\ \eta_2 &= -\mu_2 + e \cdot \varphi_2 \end{aligned} \qquad \qquad \varphi_1 - \varphi_2 = \Delta \varphi$$

Gleichgewicht: elektrochemischen Potential der Elektronen sind gleich $(\eta_1 = \eta_2)$.

Bild 71: Oberflächendipole von Halbleitern (Ionisationspotential über Orientierung), Rauke 1983/1985

Bild 72: c) Kontaktpotentiale (vor und nach Kontakt)

Bild 73: Dipolbeitrag zu Kontaktpotentialen

Abschätzung der Ladung für Ausbildung Kontaktpotential

 $A = 1 cm^2$ Plattenkondensator der Fläche:

Abstand der Platten: $d \approx 3 \text{ Å}$

$$C = \frac{\varepsilon \cdot A}{d} \approx 3 \,\mu F$$

→ Ladungsmenge für Potentialdifferenz 1 eV

$$Q = U \cdot C = 3 \cdot 10^{-6} C \triangleq 2 \cdot 10^{13} \frac{\text{Ladungen}}{cm^2}$$

Typisches Metall hat Ladungsträgerdichte von 10^{22} cm⁻³, d.h. Potentialabfall ist innerhalb von 0,1 Å abgeschirmt.

Halbleiter: Typische Ladungsträgerkonzentration des Halbleiters is gegeben durch die Dotierung Bild 74: Kontaktpotentiale Halbleiter / Metall

$$(\sim 10^{17} \ cm^{-3})$$
, d.h. Ladungen au der Tiefe von $10^4 \ \text{\AA}$

Verlauf der Bandverbiegung kann durch die Integration Poisson-Gleichung über die Raumladungszone errechnet werden.

"Durch Defekte wird Ausbildung einer Raumladungszone verhindert und Kontakt verhält sich metallisch."

25. November 2008

Raumladungszonen in Halbleitern

Poisson-Gleichung:
$$\frac{\partial^2 \phi(z)}{\partial z^2} = \frac{\rho(z)}{\varepsilon \cdot \varepsilon_0} = -\frac{[N_D](z) \cdot e}{\varepsilon \cdot \varepsilon_0}$$

"Schottky limit"

Zu Bild 76: Defekte sind zu berücksichtigen (Stichwort "Fermilevel-Pinning") <u>Bild 76</u> (Bild 7.2): Oberfläche eines p-Halbleiters

Dozent vertreten durch Thomas Mayer

Elektronische Oberflächenzustände

Halbunendlicher Festkörper

- Verlust der Translationsymetrie durch die Oberfläche
 - \rightarrow elektronische Zustände an der Oberfläche lokalisiert
- Volumen: Blochzustände, oszillierende Wellenfunktionen exponentielle Dämpfung zum Vakuum
 - \Rightarrow Darstellung als Projektion auf Oberfläche $E: f(k_{\parallel}, k_{\perp})$
- Oberflächenzustand: Wellenfunktionen auf Oberfläche begrenzt
 - $\Rightarrow E: f(k_{\parallel}); \text{ keine Dispersion entlang } k_{\perp}$
- Oberflächenresonanz: Elektronenzustand (Wellenfunktion) mit Maximum der Amplituden an der Oberfläche entartet (hybridisiert) mit Volumenzustand

Oberflächenzustand

Bild 78 (Fig. 6.18 & 6.16): Dispersion of the sp-derived surface state band on Cu(111) & Normal emission ARUPS data obtained from the Cu(111) surface

Abbruch der Kristallsymetrie

$U\left(r_{\parallel}\right) = U\left(r_{\parallel} + T\right)$	$r_{\parallel} = x, y$
U(z) = U(z+T)	für $z < 0$ (innen)
$U(z) \neq U(z+T)$	für $z > 0$ (außen)

Schrödinger-Gleichung

$$H\Psi_{ss}(r) = -\frac{\hbar^2}{2 \cdot m} \left(\frac{\partial^2}{\partial r_{\parallel}^2} + \frac{\partial^2}{\partial z^2} + U(r_{\parallel}, z) \right) \cdot \Psi_{ss}(r)$$
$$= E_{ss}(r_{\parallel}, z) \cdot \Psi_{ss}(r)$$

<u>Bild 77:</u> Oberflächenzustände (Projected bulk band structure at the surface of a metal Blochwellen

$$\Psi_{SS}(r) = \Psi_{SS}(r_{\parallel}, z) = \varphi_{k}(r_{\parallel}, z) \cdot e^{i \cdot k_{\parallel} \cdot r_{\parallel}} \cdot e^{i \cdot k_{\perp}^{*} \cdot z} \qquad k_{\perp}^{*} = k_{\perp} + i \cdot k_{\perp}^{*} v$$

 $\rightarrow e^{i \cdot k_i^* \cdot z} = e^{i \cdot k_\perp} \cdot e^{-k_\perp^\prime}$ Dämpfung

Lösungen senkrecht zur Oberfläche haben alle die Form:

$$Z > 0$$
 (ins Vakuum) $\Psi(z) = c \cdot \exp\left(-\frac{2 \cdot m}{\hbar^2} \cdot (V_0 - E) \cdot z\right)$ für $E < V_0$

$$Z > 0 \text{ (im Festkörper)} \qquad \Psi(z) = c \cdot \exp(-k \cdot z) \cdot \cos\left(\frac{1}{2} \cdot g \cdot z + \delta\right) \qquad g = \frac{2\pi}{a}$$

Klassifizierung

 intrinsische Oberflächenzustände: resultieren aus Abbruch der Gittersymetrie dangling bonds → Reorganisation
 extrinsische Oberflächenzustände: resultieren aus chemischer Wechselwirkung mit Kontaktphase (Adsorbate, Metallkontakte, Halbleiter, Elektrolyt)

Donatoren	\rightarrow	kann Ladung aufnehmen	⊳	$D^{\delta^{\scriptscriptstyle +}}$
Akzeptoren	\rightarrow	nimmt Ladung auf	⇔	$A^{\delta^{-}}$

Abhängig vom Festkörper und Oberflächenzuständen

- Metall
- ionische Verbindungen
- Halbleiter (kovalente Verbindungen)

Physikalische Näherung

Halbleiter lassen sich in mehr ionische oder mehr kovalente Halbleiter einteilen

- · Ionische Verbindungen im Grenzfall ionische Bindung (Madelungkonstante)
 - \rightarrow Tamm states

· Kovalente Verbindungen delokalisierte Elektronen $\left(E = \frac{\hbar^2}{2 \cdot m} \cdot k^2\right)$

 \rightarrow Schockley states

I amm states

Oxide: ZnO, TiO₂, SnO₂ Halogenide: CuCl, AgCl, ... Chalcogenide: CdS, ZnS, CdTe, ...

Bildung des ionischen Festkörpers

- $M \rightarrow M^+ + e^ I_p$ $X + e^- \rightarrow X^ E_a$
- → Stabilisierung durch Coulomb-Wecheselwirkung (Madelung-Energie)

 E_M (Volumen) > E_M (Oberfläche)

 $Atom \rightarrow Festkörper$

 $Atom \leftarrow OF \leftarrow Festkörper$

Ladungstranfer im Thermodynamischen Gleichgewicht zwischen Oberflächenzuständen und Volumen

 $E_{\scriptscriptstyle F}$ Volumen DOS + Besetzung der Oberflächenzustände

<u>Bild 79:</u> Oberflächenzustände auf 3D Halbleiter (Spaltfläche)

LCAO für intrinsische Oberflächenzustände (Schockley states)

1. Hybridorbitale

 $\phi_i = \sum_i c_{ij} |AO\rangle$ (z.B. sp3-Hybrid)

2. Blockwellen für Oberflächen

$$\Psi_{ss}\left(r_{\parallel},z\right) = \phi_{i}\left(r_{\parallel},z\right) \cdot \exp\left(i \cdot k \cdot r_{\parallel}\right) \cdot \exp\left(i \cdot k_{\perp} \cdot z\right)$$

$$E_{nb}^{SS} \approx \frac{H_{ii} + H_{jj}}{2} \pm \left(\frac{H_{ii} + H_{jj}}{2}\right)$$

$$E_{nb}^{SS} \approx H_{ii} \approx H_{jj}$$

$$H_{ii} = \left\langle \phi_{i} \right| H \left| \phi_{i} \right\rangle$$

Sp3-Hybride

$$\begin{aligned} \left|\phi_{i}\right\rangle &= \frac{1}{2} \left(c_{1}^{i}\left|s^{i}\right\rangle + c_{2}^{i}\left|P_{x}^{i}\right\rangle + c_{3}^{i}\left|P_{y}^{i}\right\rangle + c_{4}^{i}\left|P_{2}^{i}\right\rangle\right) \\ \varepsilon_{h}^{i} &= \frac{\left(\varepsilon_{s}^{i} + \varepsilon_{p}^{i}\right)}{4} \\ \phi_{i} &= \sum_{i} c_{i}\left|AO\right\rangle \end{aligned}$$

 $\left\langle \phi_{i} \left| H \right| \phi_{i} \right\rangle$ Hybridenergie H_{ii}

 $\left<\phi_{i}\right|H\left|\phi_{j}\right>$ Wechselwirkungs-Energie H_{ij}

Bindende / Antibindende Orbitale

02. Dezember 2008

LCAO Näherung für die elektronische Struktur von Oberflächen

 σ

$$(\sigma) E_{b} = \frac{H_{ii} + H_{ij}}{2} - \sqrt{\left(\frac{H_{ii} - H_{jj}}{2}\right)^{2} + H_{ij}}$$
$$(\sigma^{*}) E_{ab} = \frac{H_{ii} + H_{ij}}{2} + \sqrt{\left(\frac{H_{ii} - H_{jj}}{2}\right)^{2} + H_{ij}}$$

$$\begin{split} c_{1} \left| \phi_{1} \right\rangle + c_{2} \left| \phi_{2} \right\rangle &= \Psi_{bindend} \quad \left(c_{1} > c_{2} \right) \\ &= \Psi_{antibindend} \quad \left(c_{1} < c_{2} \right) \end{split}$$

Unter Berücksichtigung weiterer Wechselwirkungen im Gitter: Erzeugung von Bändern durch Überlappung vieler atomarer Wellenfunktionen

$$\Psi_{b}^{k} = \sum_{l} c_{l} \cdot \Psi_{b,l} = \sum_{l} \exp(i \cdot k \cdot l) \cdot \Psi_{b,l}$$
$$\Psi_{ab}^{k} = \sum_{l} c_{l} \cdot \Psi_{ab,l} = \sum_{l} \exp(i \cdot k \cdot l) \cdot \Psi_{ab,l}$$

"Bindende Zustände bilden das Valenzband, antibindende Zustände bilden das Leitungsband."

Bild 80 (Figure 3-3):
$\underline{DH0} \underline{OO}$ (Figure 5-5).
Successive transformations of
linear combinations of atomic
orbitals

Bild 81: Si(100) Oberflächen Bild 83: Si(111) 2x1 Oberflächen & Si(111) 7x7 Oberflächen

05. Dezember 2008

<u>Bild 84</u> (Fig. 6.42): Comparison of calculated surface state band structures of teh non-reconstructed lowindex surfaces of Ge ans GeAs Bild 85: Cu 111-Oberflächenzustand (Photoemission, Dispersion und Auswertung der Wellenstruktur) Bilder (nicht verteilt): Erzeugung eines Quanten-Corrals durch sequentielle Manipulation adsorbierter Fe-Atrome & Elektronenwelle auf Cu-Oberfläche

Ga

As

Ga

Extrinsische Oberflächenzustände

Entstehen aus intrinsischen Oberflächenzuständen und Adsorbaten (Kontaktmedium: Gas, Metall, Halbleiter, usw.)

dangeling-bond Adsorbat Zustand

LCAO für extrinsische Oberflächenzustände

Linearkombination von Oberflächenzustand $\Psi_{\rm SS}$ mit Adsorbatzustand $\Psi_{\rm A}$

$$\Psi_{SS}\left(\vec{r}_{\parallel},z\right) = \underbrace{\phi_{i}\left(\vec{r}_{\parallel},z\right) \cdot e^{i\cdot\vec{k}\cdot\vec{r}_{\parallel}} \cdot e^{i\cdot\vec{k}_{\perp}\cdot\vec{r}}}_{}$$

Blochansatz mit Produkt aus atomarer Wellenfunktion $\phi_i(\vec{r}_{\parallel}, z)$ und laufender e-Welle

 $\Psi_{\scriptscriptstyle A}$ Elektronenzustand des Atoms / Moleküls, atomar scharf

$$\rightarrow \qquad \Psi_{SS}^{ext} = \sum_{k_{\parallel}} c_{k_{\parallel}} \cdot \Psi_{SS}\left(\bar{r}_{\parallel}, z\right) + \sum_{e} c_{e} \cdot \Psi_{e}^{A}$$

Oder für den einfachsten Fall (Wechselwirkung an einem Oberflächen-Atom)

$$(\Sigma) \Psi_{SS}^{ext} = c_1 \cdot \Psi_{SS} + c_2 \cdot \Psi_A$$
$$E_{b}_{ab} = \frac{H_{ii}^{SS} + H_{jj}^A}{2} \mp \sqrt{\left(\frac{H_{ii} + H_{jj}^A}{2}\right)^2 + H_{ij}^2}$$

 \rightarrow für die Aufspaltung der Energieniveaus folgt ungefähr: $\Delta E_{\frac{b}{a}} \approx \frac{\left|H_{ij}\right|^2}{E_i - E_j}$

Beispiele für extrinsische Oberflächenzustände

Bild 86: Struktur Oberfläche mit dangeling bonds einzeln & Ausfspaltung der Si(111)-OFZ mit dangeling-bond <u>Bild 87:</u> Aufspaltung GaAs-OFZ mit dangeling-bond & Pinning-Zustände bei versch. Adsorbaten

Chemisorption und Koordinationschemie

* Wecheslwrikung von Adsorbat und Festkörper-Oberfläche wird genähert durch Wechselwrikung von Oberfläche-Ateomen mit Adsorbat in Analogie zu chemischen Bindungen.

Oberfläche – Cluster Analogie:

Bindeungsverhältnisse vergleichbar zu chemischen Verbindungen mit vergleichbarer Geometrie.

$$O_{2} \quad \text{auf} \quad Ru, Pt \qquad \underbrace{\bigvee_{Ru, Pt}^{O-O}}_{Q_{2}^{2-}} O_{2}^{2-}$$

$$Co, Mn \qquad \underbrace{\bigvee_{Ru, Pt}^{O}}_{Ru, Pt} O_{2}^{2-} \underbrace{\bigvee_{Ru, Pt}^{O-O}}_{Ru, Pt} O_{2}^{2-}$$

Regeln für Berechnung von Oberflächenzuständen

 Berücksichtigung der Wechselwirkungs-Symmetrie an Oberfläche zwischen Adsorbar und Festkörper analog zu chemischen Bindungen (welche Orbitale überlappen) <u>nota bene:</u> Verbreiterung der Zustände durch Gittersymmetrie

 $E(k_{\parallel})$

 Berücksichtigung der Wechselwirkungs-Energie an Oberfläche in Analogie zur Wechselwirkungs-energie der chemischen Bindung:

bestimmt durch energetische Lage $E_{SS}(H_{ii}(OFZ)) + E_{ads}(H_{ij})$ und durch

Austauschintegral H_{ij}

<u>nota.bene:</u> Erzeugung von Oberflächen-Bändern (Oberflächenzustände, Oberflächenresonanzen) mit $E = E(k_{\parallel})$

3. Die Wecheslwirkung mit Oberfläche kann durch Ladunstransfer vom/zum Festkörper auch zu bindender Wechselwirkung führen, wenn dies mit molekularen Systemen nicht möglich ist:

keine Wechselwirkung

bindende Wechselwirkung

<u>Bild 88</u> (Abb. 5.6.13 & Fig. 9.3): Schematische Darstellung der Wechselwirkung eines Atoms mit deiner Metalloberfläche & Simple model of covalent chemisorption bonding

Elektrische Effekte der Adsorption

- scharfe elektronische Zustände verbreitern und werden zu niedrigeren Energien verschoben
- Die elektronische Verteilung der Oberflächenzustände ist bestimmt durch relative Energien Festkörper / Adsorbat → Bänder der Oberflächenzustände
- Je nach Lage und Besetzung der Oberflächenzustände im Vergleich zu volumen erfolgt Ladungstransfer im Festkörper → Oberflächenzustand
 - ➡ Konsequenz f
 ür die Ausbildung eines Oberfl
 ächen-Dipols und Variation der Austrittsarbeit

Extrinsiche Oberflächenzustände auf Metalle: Chemisorption von $|C \equiv O|$

Die Wechselwirkungs-Geometrie CO mit π -d-Orbitalen

Geometrie:

Bild 89: Relative Ladungstransferprozesse auf Oberfläche ausgehend von Ausgangszuständen

 $\Delta \phi < 0$

Austrittarbeitsänderungen durch Adsorbate

- · Ladungstransfer Adsorbat \leftrightarrow Substrat verändert Austrittsarbeit
 - \rightarrow unterschiedliche Effekte für Halbleiter und Metalle
- · Metalle: Durch Ladungstransfer nur lokaler Dipol (auf Oberfläche)

 $\Delta \phi > 0 \qquad \Delta \phi > 0$ (Austrittsarbeit nimmt ab) (Austrittsarbeit nimmt zu)

 $\Delta \phi < 0$

Lokaler Oberflächen-Dipol

Für die Änderung des Oberflächen-Dipols $\Delta \chi \approx \Delta \chi_{ads}$ äquivalent zur Austrittsarbeitsänderung gilt:

$$\Delta \phi = e \Delta \chi = -e \cdot \vec{E}_{\perp} \cdot \vec{d}$$

Potentialabfall über Plattenkondensator \triangleq Doppelschicht auf Oberfläche durch Adsorbat.

d: Abstand der Ladungen \triangleq Abstand im Plattenkondensator

$$\begin{vmatrix} C = O \\ \overline{E} \\ C = O \end{vmatrix}$$

$$e^{\overline{c}} d^{\delta^{-}}$$

<u>c</u>-

 $\delta^{\scriptscriptstyle +}$

elektrostatische icht

Für Plattenkondensator gilt:

 $\overline{E} = \frac{n_{dip} \cdot q}{\mathcal{E}_0}$

 $E = \frac{\sigma}{\varepsilon_0} \qquad \qquad \sigma = \frac{\mathrm{d}Q}{\mathrm{d}A}$

 \rightarrow mit $\vec{p} = q \cdot \vec{d}$ gilt:

$$\Delta \phi = -\frac{e}{\varepsilon_0} \cdot n_{dip} \cdot p_{\perp}$$

Häufig verwendete Formel lautet:

$$\Delta \phi = -\frac{e}{\varepsilon_0} \cdot n_{dip} \cdot p_{\perp,eff} \left(\theta \right)$$

 $p_{\perp,eff}\left(\theta\right)$ berücksichtigt Orientierung und gegebenenfalls die gegenseitige Beeinflussung der Dipole im Abhängigkeit von θ

Änderung der Austrittsarbeit von Halbleitern durch Adsorbate

→ Überlagerung von Raumladungszonen und lokalen Dipolen

Die Änderung der Austrittsarbeit $\Delta \phi$ zerfällt in zwei Teile:

- ausgedehnte Raumladungszone ergibt Bandverbiegung eV_b (analog zu Schottky-Kontakt)
- verändertes Oberflächen-Dipol ergibt Änderung $e\Delta\chi$ von E_A und I_p

$$\Delta \phi = eV_b + e\Delta \chi$$
$$\Delta E_A = \Delta I_p = e\Delta \chi$$

Festkörpergrenzflächen

Auftreten in: \cdot Heterostrukturen \rightarrow Schichtwachstum, Epitaxie \cdot Korngrenzen \rightarrow Polykristalline Materialien,

Eigenschaften bestimmt durch:

- relative kristalline Orientierung
- Struktur der Grenzfläche abrupt kristallin abrupt amorph interdiffundiert
 - reaktive
- elektronische und physikalische Eigenschaften

Bild 90 (Fig. 11.5): Cross-sectional HREM images of Si-CoSi₂-Si heterostructures <u>Bild 91</u> (Fig. 3.12): Different types of solid/solid interfaces

Grenzflächenenergie, Grenzflächenspannung

Analog zur Oberflächen-Energie kann Grenzflächen-Energie definiert werden: Thermodynamische Größe für Wechselwirkungs-Energie über Phasengrenzfläche

 $\gamma_{A,B}$ $\gamma_{S/F}$

Formel gilt:

$$\gamma_{A,B} = \left(\frac{\partial G}{\partial A}\right)_{T,p,n_A,n_B}$$

Experimentell schwer zu bestimmen, daher Kreisprozess:

Erzeugung von zwei Oberflächen von A und B, dann zusammenfügen von A/B

$$\gamma_{A,B} = \gamma_A + \gamma_B - \left(\frac{\partial W_{ads}}{\partial A_{AB}}\right)_{T,p} = \gamma_A + \gamma_B - B$$

 γ_A, γ_B positiv

B negativ

 $\gamma_{A,B}$ negativ oder positiv

 $W_{ads} \equiv$ Adhäsionsenergie, die beim Zusammenfügen von zwei Einheitsflächen A/B frei wird

> <u>Bild 92:</u> Grenzflächenenergie

 $\rightarrow \gamma_{A,B} \text{ groß (positiv)} \quad \text{wenn } \gamma_A + \gamma_B \text{ groß (positiv)}$

und β klein (negativ)

Messung der Grenzflächen-Energie

- Oberflächen-, Grenzflächen-Energie können auch als OF-, GF-Spannungen verstanden werden \triangleq Kraft zur Verkleinerung der OF/GF $\overline{\gamma}$ (parallel zur OF, GF)
- · Gleichgewichtssituation \triangleq Gleichgewicht der Kräfte

(Näherung für tropfenförmige Adsorbate)

⇒

Fallbeispiele

 $\gamma_A > \gamma_{A,B} \Rightarrow \gamma_B \cdot \cos(\theta) > 0 \Rightarrow \theta < 90^\circ$

- → Bildung der Oberfläche A kosten mehr Energie als Bildung der Oberfläche B
 - ⇒ Tendenz: Verkleinerung der Oberfläche A (Substrat)
 Vergrößerung der Oberfläche B (Film)
 Benetzung von A durch B

Grenzfall vollständige Benetzung $(\theta = 0)$

- → Benetzung von A durch B: Vollständige Spreizung des Films
- → |große| Adhäsionsenergie βg
 |kleine| Filmoberflächenenergie
 |große| Substrat-Oberflächen-Energie
- $\gamma_A < \gamma_{A,B} \Rightarrow \gamma_B \cdot \cos(\theta) < 0 \Rightarrow \theta > 90^\circ$
- → Bildung der Oberfläche von A ist günstiger als Bildung Oberfläche B
 ⇒ Tendenz: Vergrößerung der Oberfläche A (Substrat)
 Verkleinerung der Oberfläche B (Film)

Grenzfall kleine Benetzung ($\theta = 180^{\circ}$)

- → Benetzung von A durch B: Kugelförmige Adsorbatschicht
- \rightarrow |kleine| Adhäsionsenergie β g

|große| Filmoberflächenenergie

kleine Substrat-Oberflächen-Energie

<u>Bild 95:</u> Wachstumsmoden

19. Dezember 2008

Bild 93: Elementary Steps of Film Growth (Epitaxy)

Filmwachstum (Epitaxie)

<u>Einzelschritte:</u> - Adsorption ✓

- Desorption \checkmark
- Diffusion
- Nukleation
- Kristallwachstum
- (Inter-) Diffusion ins Volumen

 \checkmark

 $\Rightarrow \text{ zwei Phasen: Phase I} \triangleq \text{Substratlberfläche } \langle S \rangle$ Phase II $\triangleq \text{OF-naher Bereich } \langle V \rangle$

Für Gleichgewicht gilt: $G\langle V \rangle = G\langle S \rangle$ oder $\mu \langle V \rangle = \mu \langle S \rangle$ mit G oder μ definiert durch $\sum c_i(R_i), \mu_{0,i}$ Gleichgewichtstemperatur T_0

Damit sind Potentialbereich zu definieren

$$T_s > T_0$$
 $T_s = T_0$ $T_s < T_0$ $G\langle V \rangle < G\langle S \rangle$ $G\langle V \rangle = G\langle S \rangle$ $G\langle V \rangle > G\langle S \rangle$ Untersättigung \triangleq Gleichgewicht \triangleq StabilitätÜbersättigung \triangleq VerdampfungAbscheidung

Für Einstoffsystem (1 Spezies)

$$\Delta G = \Delta \mu = -R \cdot T \cdot \ln\left(\frac{p}{p_0}\right) \qquad \qquad p \equiv \text{Druck der Spezies im Grenzbereich} \\ p_0 \equiv \text{Gleichgewichtsdruck} \end{cases}$$

$$\frac{p}{p_0} \equiv \text{Übersättigung (ist } f(T))$$

- p ist einstellbar über Quellenfluß
- p_0 ist einstellbar über Substrat-Temperatur

Alternativ: Berücksichtigung der relativ en Raten für Adsorption und Desorption

$$\Delta G = \Delta \mu = -R \cdot T \cdot \ln\left(\frac{R_{ads}}{R_{des}}\right)$$

Adsorptions/Desorptionsverhältnis \triangleq Übersättigung auf Oberfläche

Adsorptionsrate (vgl. Kapitel Adsorption)

$$R_{ads} = \frac{\mathrm{d}N_{ads}}{\mathrm{d}t} = \underbrace{\frac{p}{\sqrt{2 \cdot \pi \cdot m \cdot k \cdot T_s}}}_{\text{kinetische Gastheorie}} \cdot \underbrace{S(t,T)}_{\text{Haftkoeffizient}} \begin{bmatrix} cm^{-2} \ s^{-1} \end{bmatrix}$$

- T_s : lokale Temperatur (auf Substrat-Oberfläche)
- *p*: lokaler Druck (gegeben durch Quellengeometrie)

Typische Größen:

- Teilchenfluss typisch $10^{14} 10^{16} \frac{\text{Atome}}{cm^2 \cdot s} \triangleq 0, 1 10 \frac{\text{Monolagen}}{s}$
- Thermalisierung der Atome auf Oberfläche: Quellen $T_Q \rightarrow T_s$, $T_s < T_Q$

Desorption (siehe auch Kapitel Desorption)

$$R_{ads} = -\frac{\mathrm{d}N_{ads}}{\mathrm{d}t} = N_{ads} \cdot \nu_{\perp} \cdot \exp\left(-\frac{\overbrace{E_{ads}}^{\approx E_{ds}}}{R \cdot T_{s}}\right) = \frac{N_{ads}}{\tau_{ads}}$$

- $\tau_{ads} \triangleq \text{mittlere Adsorptionszeit} \rightarrow N_{ads}^{\text{max}} \approx R_{ads} \cdot \tau_{ads} \text{ für } S(t) = 0$
- \rightarrow Gleichgewicht Adsorption / Desorption

<u>Für Abscheidung:</u> $R_{ads} > R_{des}$

Oberflächendiffusion

Für die mittlere Verweilzeit auf Oberfläche gilt:

Adsorptions-Desorptions-Gleichgewicht $|R_{ads}| = |R_{des}|$

$$\tau_{ads} = \frac{N_{ads}}{R_{ads}}$$
 mit $R_{ads} = \frac{p}{\sqrt{2 \cdot \pi \cdot m \cdot R \cdot T}}$

Oder τ_{ads} ist bestimmt durch die Desorptionsrate:

$$\tau_{ads} = \frac{1}{\nu} \cdot \exp\left(\frac{E_{ads}}{R \cdot T}\right)$$

Damit folgt für die mittlere freie Weglänge λ auf Oberfläche (random walk Prozess)

$$\lambda = \sqrt{2} \cdot D \cdot \tau_{ads}$$

Mit $D = \frac{1}{2} \cdot a_0^2 \cdot v_{\parallel} \cdot \exp\left(-\frac{E_{diff}}{k_B \cdot T}\right) = D_0 \cdot \exp\left(-\frac{E_{diff}}{k_B \cdot T}\right)$
 $\rightarrow \qquad \qquad \lambda = \sqrt{2} \cdot a_0 \cdot \exp\left(\frac{E_{ads} - E_{diff}}{2 \cdot k_B \cdot T}\right)$

Diffusionsbarrieren $\approx \left(\frac{1}{2} \text{ bis } \frac{1}{4}\right) \cdot E_{ads}$

⇒ Mittlere Diffusionslänge sinkt bei steigender Substrattemperatur T_s , da $E_{ads} > E_{diff}$ → mit höheren T steigt die Diffusion, Verweilzeit sinkt schneller.

13. Januar 2009

Keimbildung

Homogene Keimbildung (ohne Wechselwirkung mit Substrat)

$$\Delta G_{ges} = \Delta G_{Volumen} + \Delta G_{Oberfläche}$$

Mit $\Delta G_{Vol} = \frac{\left(\frac{4 \cdot \pi}{3} \cdot r^3\right)}{\Omega} \cdot \Delta \mu = -\frac{\left(\frac{4 \cdot \pi}{3} \cdot r^3\right)}{\Omega} \cdot k_B \cdot T \cdot \ln\left(\frac{p}{p_0}\right)$

$$\Delta G_{Oberfläche} = 4 \cdot \pi \cdot r^2 \cdot \gamma$$

 $\Delta \mu$ Betrag Pro Atum zu Bindungsenergie

 Ω relativer Volumenbeitrag pro Atom

Damit ergibt sich folgender Zusammenhang

 $\gamma \equiv \text{Oberflächenspannung}$

von ΔG_{ges} von r (Größe Cluster)

Kritischer Keimradius r*

Errechnen eines stabilen Nukleationskeims erst ab r*

$$\left(\frac{\mathrm{d}G_{ges}}{\mathrm{d}r}\right) = 0$$

$$\rightarrow r^* = \frac{-2 \cdot \gamma \cdot \Omega}{\Delta \mu} \text{ für kritischen Radius}$$

$$\Delta G^* = \frac{16 \cdot \pi}{3} \cdot \frac{\gamma^3 \cdot \Omega^2}{\Delta \mu^2}$$

 $\Delta \mu$ Energieniveau beim Übertritt von Atom von Gasphase in Festkörper

Bild 96 (Bild 5.1 & 5.2): Abhängigkeit der Keimbildungsarbeit und –größe von der Übersättigung & Potential von Cluster und seine Anteile in Abhängigkeit von der Clustergröße i

Heteronukleare Keimbildung (Nukleation auf Oberflächen)

• Erweiterung der energiebetrachtung um weitere Energieterme (Grenzflächen-, Oberflächenenergien)

 $\Delta G_{ges} = \Delta G_{Vol} + \Delta G_{OF} + \Delta G_{GF} \qquad (\text{versch. Beiträge zu } \Delta G_{OF})$

 $\Delta G_{ges} = \underbrace{a_1 \cdot r^3 \cdot \Delta \mu}_{\text{Volumen}} + \underbrace{a_2 \cdot r^2 \cdot \gamma_{F/S}}_{\text{Grenzfläche}} - \underbrace{a_3 \cdot r^3 \cdot \gamma_S}_{\substack{\text{verlohrengegangene}\\ \text{Oberfläche des}}} + \underbrace{a_4 \cdot r^2 \cdot \gamma_F}_{\substack{\text{Bildung der neuen}\\ \text{Oberfläche}}}$ (S: Substrat, F: Film)

Phänomenologische Beschreibung (Young-Gleichung)

$$\gamma_{S} \geq \gamma_{F} + \gamma_{S/F} + c \cdot k_{B} \cdot T \cdot \ln\left(\frac{p}{p_{0}}\right)$$

→ Schicht für Schicht-Wachstum

$$\gamma_{S} \leq \gamma_{F} + \gamma_{S/F} + c \cdot k_{B} \cdot T \cdot \ln\left(\frac{p}{p_{0}}\right)$$

 \rightarrow Cluster-Wachstum

Wachstumsmoden

a)	Schicht-für-Schicht-Wachstum (Frank-van der Merwe)					
	\rightarrow für starke Wechselwirkung Schicht-Substrat]	"Wetting"			
	\rightarrow für große Oberflechenenergien Substrat	J	"Benetzen"			
c)	Inselwachstum (Cluster-Wachstum) (Volmer-Weber)					
	\rightarrow schwache Wechselwirkung Substrat-Film	J	"Dewetting"			
	\rightarrow große Oberflächenenergie des Films	ſ	"Entnetzen"			

b) Schicht- und nachfolgend Cluster-Wachstum (Stranski-Krastanov)

 \rightarrow starke Wechselwirkung Schicht-Substrat zu Beginn, <u>aber</u> dann Schwächung der Wecheslwirkungsenergie

 \rightarrow typisch für gitterfehlangepasste und daher zu Beginn mit Gitterverzerrung aufwachsende Schichten